Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.

Identifieur interne : 000737 ( Main/Exploration ); précédent : 000736; suivant : 000738

Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.

Auteurs : Marcelo A. Comini [Uruguay] ; R Luise Krauth-Siegel ; Massimo Bellanda

Source :

RBID : pubmed:22978520

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Glutaredoxins are ubiquitous small thiol proteins of the thioredoxin-fold superfamily. Two major groups are distinguished based on their active sites: the dithiol (2-C-Grxs) and the monothiol (1-C-Grxs) glutaredoxins with a CXXC and a CXXS active site motif, respectively. Glutaredoxins are involved in cellular redox and/or iron sulfur metabolism. Usually their functions are closely linked to the glutathione system. Trypanosomatids, the causative agents of several tropical diseases, rely on trypanothione as principal low molecular mass thiol, and their glutaredoxins readily react with the unique bis(glutathionyl) spermidine conjugate.

RECENT ADVANCES

Two 2-C-Grxs and three 1-C-Grxs have been identified in pathogenic trypanosomatids. The 2-C-Grxs catalyze the reduction of glutathione disulfide by trypanothione and display reductase activity towards protein disulfides, as well as protein-glutathione mixed disulfides. In vitro, all three 1-C-Grxs as well as the cytosolic 2-C-Grx of Trypanosoma brucei can complex an iron-sulfur cluster. Recently the structure of the 1-C-Grx1 has been solved by NMR spectroscopy. The structure is very similar to those of other 1-C-Grxs, with some differences in the loop containing the conserved cis-Pro and the surface charge distribution.

CRITICAL ISSUES

Although four of the five trypanosomal glutaredoxins proved to coordinate an iron-sulfur cluster in vitro, the physiological role of the mitochondrial and cytosolic proteins, respectively, has only started to be unraveled.

FUTURE DIRECTIONS

The use of trypanothione by the glutaredoxins has established a novel role for this parasite-specific dithiol. Future work should reveal if these differences can be exploited for the development of novel antiparasitic drugs.


DOI: 10.1089/ars.2012.4932
PubMed: 22978520
PubMed Central: PMC3739957


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.</title>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay. mcomini@pasteur.edu.uy</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo</wicri:regionArea>
<wicri:noRegion>Montevideo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:22978520</idno>
<idno type="pmid">22978520</idno>
<idno type="doi">10.1089/ars.2012.4932</idno>
<idno type="pmc">PMC3739957</idno>
<idno type="wicri:Area/Main/Corpus">000804</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000804</idno>
<idno type="wicri:Area/Main/Curation">000804</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000804</idno>
<idno type="wicri:Area/Main/Exploration">000804</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.</title>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay. mcomini@pasteur.edu.uy</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo</wicri:regionArea>
<wicri:noRegion>Montevideo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (physiology)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protozoan Proteins (chemistry)</term>
<term>Protozoan Proteins (physiology)</term>
<term>Spermidine (analogs & derivatives)</term>
<term>Spermidine (metabolism)</term>
<term>Trypanosoma (enzymology)</term>
<term>Trypanosomiasis (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (physiologie)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de protozoaire (composition chimique)</term>
<term>Protéines de protozoaire (physiologie)</term>
<term>Spermidine (analogues et dérivés)</term>
<term>Spermidine (métabolisme)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Trypanosoma (enzymologie)</term>
<term>Trypanosomiase (parasitologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glutaredoxins</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Trypanosoma</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Trypanosoma</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Trypanosomiase</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Trypanosomiasis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Conserved Sequence</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Glutaredoxins are ubiquitous small thiol proteins of the thioredoxin-fold superfamily. Two major groups are distinguished based on their active sites: the dithiol (2-C-Grxs) and the monothiol (1-C-Grxs) glutaredoxins with a CXXC and a CXXS active site motif, respectively. Glutaredoxins are involved in cellular redox and/or iron sulfur metabolism. Usually their functions are closely linked to the glutathione system. Trypanosomatids, the causative agents of several tropical diseases, rely on trypanothione as principal low molecular mass thiol, and their glutaredoxins readily react with the unique bis(glutathionyl) spermidine conjugate.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>Two 2-C-Grxs and three 1-C-Grxs have been identified in pathogenic trypanosomatids. The 2-C-Grxs catalyze the reduction of glutathione disulfide by trypanothione and display reductase activity towards protein disulfides, as well as protein-glutathione mixed disulfides. In vitro, all three 1-C-Grxs as well as the cytosolic 2-C-Grx of Trypanosoma brucei can complex an iron-sulfur cluster. Recently the structure of the 1-C-Grx1 has been solved by NMR spectroscopy. The structure is very similar to those of other 1-C-Grxs, with some differences in the loop containing the conserved cis-Pro and the surface charge distribution.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>Although four of the five trypanosomal glutaredoxins proved to coordinate an iron-sulfur cluster in vitro, the physiological role of the mitochondrial and cytosolic proteins, respectively, has only started to be unraveled.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The use of trypanothione by the glutaredoxins has established a novel role for this parasite-specific dithiol. Future work should reveal if these differences can be exploited for the development of novel antiparasitic drugs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22978520</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.</ArticleTitle>
<Pagination>
<MedlinePgn>708-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4932</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">Glutaredoxins are ubiquitous small thiol proteins of the thioredoxin-fold superfamily. Two major groups are distinguished based on their active sites: the dithiol (2-C-Grxs) and the monothiol (1-C-Grxs) glutaredoxins with a CXXC and a CXXS active site motif, respectively. Glutaredoxins are involved in cellular redox and/or iron sulfur metabolism. Usually their functions are closely linked to the glutathione system. Trypanosomatids, the causative agents of several tropical diseases, rely on trypanothione as principal low molecular mass thiol, and their glutaredoxins readily react with the unique bis(glutathionyl) spermidine conjugate.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">Two 2-C-Grxs and three 1-C-Grxs have been identified in pathogenic trypanosomatids. The 2-C-Grxs catalyze the reduction of glutathione disulfide by trypanothione and display reductase activity towards protein disulfides, as well as protein-glutathione mixed disulfides. In vitro, all three 1-C-Grxs as well as the cytosolic 2-C-Grx of Trypanosoma brucei can complex an iron-sulfur cluster. Recently the structure of the 1-C-Grx1 has been solved by NMR spectroscopy. The structure is very similar to those of other 1-C-Grxs, with some differences in the loop containing the conserved cis-Pro and the surface charge distribution.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">Although four of the five trypanosomal glutaredoxins proved to coordinate an iron-sulfur cluster in vitro, the physiological role of the mitochondrial and cytosolic proteins, respectively, has only started to be unraveled.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">The use of trypanothione by the glutaredoxins has established a novel role for this parasite-specific dithiol. Future work should reveal if these differences can be exploited for the development of novel antiparasitic drugs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Comini</LastName>
<ForeName>Marcelo A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay. mcomini@pasteur.edu.uy</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krauth-Siegel</LastName>
<ForeName>R Luise</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bellanda</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>96304-42-6</RegistryNumber>
<NameOfSubstance UI="C044809">trypanothione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U87FK77H25</RegistryNumber>
<NameOfSubstance UI="D013095">Spermidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013095" MajorTopicYN="N">Spermidine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014345" MajorTopicYN="N">Trypanosoma</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014352" MajorTopicYN="N">Trypanosomiasis</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22978520</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4932</ArticleId>
<ArticleId IdType="pmc">PMC3739957</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2011 Jan;79(1):244-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2005 Jan;386(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Sep;11(9):2083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19290777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):665-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 28;278(9):6809-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 1;58(2):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2007 Dec;156(2):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:669-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Mar 15;12(6):787-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Oct;5(10):e1000541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 17;275(11):7547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Oct 1;209(1):207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1327770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2003 Apr;384(4):619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12751791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Jan;389(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jun;66(Pt 6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8678-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):35224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Nov-Dec;125(1-2):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12467989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 5;276(40):37133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11479312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Jan 1;50(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20969952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jul 24;431(3):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Oct;185(19):5673-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13129938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 6;276(14):10602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Apr;24(4):1035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19952282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1974 Jan 15;38(3):263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 15;280(15):14385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Aug 15;17(4):583-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1997 Aug;378(8):827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9377478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Sep 15;45(6):733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18588970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2006 Feb;97(2):151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16310752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 15;402(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Nov 20;554(3):301-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Oct 7;36(40):12259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;831:429-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(4):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2001 Sep 3;116(2):171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11522350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 2010 May;137(6):899-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20152063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jan 15;40(2):210-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Uruguay</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</noCountry>
<country name="Uruguay">
<noRegion>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000737 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000737 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22978520
   |texte=   Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22978520" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020